65 research outputs found

    Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper, the kinetics of oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>(HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [Cr<sup>III</sup>(HIDA)(IDA)(H<sub>2</sub>O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study.</p> <p>Results</p> <p>The results have shown that the reaction is first order with respect to both [IO<sub>4</sub><sup>-</sup>] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [Cr<sup>III</sup>(IDA)(Val)(H<sub>2</sub>O)<sub>2</sub>] and [Cr<sup>III</sup>(IDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3 </sub>(1.82 × 10<sup>-3 </sup>s<sup>-1</sup>), is greater than the value of <it>k</it><sub>1 </sub>(1.22 × 10<sup>-3 </sup>s<sup>-1</sup>) for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>at 45.0°C and <it>I </it>= 0.20 mol dm<sup>-3</sup>. It is proposed that electron transfer proceeds through an inner-sphere mechanism <it>via </it>coordination of IO<sub>4</sub><sup>- </sup>to chromium(III).</p> <p>Conclusion</p> <p>The oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3</sub>, is greater than the value of <it>k</it><sub>1 </sub>for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.</p

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Human plasma protein N-glycosylation

    Full text link

    Ranking Indices for Mitigating Project Risks

    No full text
    International audienceThe goal of project risk management is to mitigate the impact of risks on project objectives such as budget and time. A popular approach to determine where to focus mitigation efforts, is the use of so-called “ranking indices”. Ranking indices produce a ranking of activities (or even better, risks) based on their impact on project objectives. In turn, this ranking can be used to determine the risks that are to be mitigated. Different ranking indices, however, produce different rankings. Therefore, one might wonder which ranking index is best? In this chapter, we provide an answer to this question

    Improving Cloud Simulation using the Monte-Carlo Method

    No full text
    International audienceIn the cloud computing model, cloud providers invoice clients for resource consumption. Hence, tools helping the client to budget the cost of running his application are of pre-eminent importance. However, the opaque and multi-tenant nature of clouds make task runtimes variable and hard to predict, and hamper the creation of reliable simulation tools. In this paper, we propose an improved simulation framework that takes into account this variability using the Monte-Carlo method. We consider the execution of batch jobs on an actual platform, scheduled using typical heuristics based on the user estimates of task runtimes. We model the observed variability through simple random variables to use as inputs to the Monte-Carlo simulation. Based on this stochastic process, predictions are expressed as interval-based makespan and cost. We show that, our method can capture over 90% of the empirical observations of makespan while keeping the capture interval size below 5% of the average makespan

    Synthesis, antibacterial, antielastase, antiurease and antioxidant activities of new methoxy substitued bis-1,2,4-triazole derivatives

    No full text
    yanardag, refiye/0000-0003-4185-4363WOS: 000313663400009PubMed: 22085138The methoxy substitued two novel bis triazole-schiff bases (6 a-b) were synthesized with 4-amino-3,5-diethyl-4H-1,2,4-triazole and various bis-aldehydes. Their amine derivatives prepared by reduced with NaBH4 (5 a-b). The obtained products 6 a-b and 7 a-b were identified by FT-IR, H-1-NMR, C-13-NMR. The bis triazole-schiff bases and amine derivatives were tested for antimicrobial activity using the agar diffusion technique against 11 bacteria. The synthesized compounds (6 a-b and 7 a-b) were screened for their antielastase, antiurease and antioxidant activities. The resuts showed that the synthesized compounds (6 a-b and 7 a-b) had effective antielastase and antiurease activities
    • 

    corecore